--- /dev/null
+# This is an example configuration file for the LVM2 system.
+# It contains the default settings that would be used if there was no
+# /etc/lvm/lvm.conf file.
+#
+# Refer to 'man lvm.conf' for further information including the file layout.
+#
+# To put this file in a different directory and override /etc/lvm set
+# the environment variable LVM_SYSTEM_DIR before running the tools.
+#
+# N.B. Take care that each setting only appears once if uncommenting
+# example settings in this file.
+
+
+# This section allows you to configure which block devices should
+# be used by the LVM system.
+devices {
+
+ # Where do you want your volume groups to appear ?
+ dir = "/dev"
+
+ # An array of directories that contain the device nodes you wish
+ # to use with LVM2.
+ scan = [ "/dev" ]
+
+ # If set, the cache of block device nodes with all associated symlinks
+ # will be constructed out of the existing udev database content.
+ # This avoids using and opening any inapplicable non-block devices or
+ # subdirectories found in the device directory. This setting is applied
+ # to udev-managed device directory only, other directories will be scanned
+ # fully. LVM2 needs to be compiled with udev support for this setting to
+ # take effect. N.B. Any device node or symlink not managed by udev in
+ # udev directory will be ignored with this setting on.
+ obtain_device_list_from_udev = 1
+
+ # If several entries in the scanned directories correspond to the
+ # same block device and the tools need to display a name for device,
+ # all the pathnames are matched against each item in the following
+ # list of regular expressions in turn and the first match is used.
+ preferred_names = [ ]
+
+ # Try to avoid using undescriptive /dev/dm-N names, if present.
+ # preferred_names = [ "^/dev/mpath/", "^/dev/mapper/mpath", "^/dev/[hs]d" ]
+
+ # A filter that tells LVM2 to only use a restricted set of devices.
+ # The filter consists of an array of regular expressions. These
+ # expressions can be delimited by a character of your choice, and
+ # prefixed with either an 'a' (for accept) or 'r' (for reject).
+ # The first expression found to match a device name determines if
+ # the device will be accepted or rejected (ignored). Devices that
+ # don't match any patterns are accepted.
+
+ # Be careful if there there are symbolic links or multiple filesystem
+ # entries for the same device as each name is checked separately against
+ # the list of patterns. The effect is that if the first pattern in the
+ # list to match a name is an 'a' pattern for any of the names, the device
+ # is accepted; otherwise if the first pattern in the list to match a name
+ # is an 'r' pattern for any of the names it is rejected; otherwise it is
+ # accepted.
+
+ # Don't have more than one filter line active at once: only one gets used.
+
+ # Run vgscan after you change this parameter to ensure that
+ # the cache file gets regenerated (see below).
+ # If it doesn't do what you expect, check the output of 'vgscan -vvvv'.
+
+
+ # By default we accept every block device:
+ #filter = [ "a/.*/" ]
+ filter = [ "a|^/dev/sda[0-9]*$|", "r/.*/" ]
+
+ # Exclude the cdrom drive
+ # filter = [ "r|/dev/cdrom|" ]
+
+ # When testing I like to work with just loopback devices:
+ # filter = [ "a/loop/", "r/.*/" ]
+
+ # Or maybe all loops and ide drives except hdc:
+ # filter =[ "a|loop|", "r|/dev/hdc|", "a|/dev/ide|", "r|.*|" ]
+
+ # Use anchors if you want to be really specific
+ # filter = [ "a|^/dev/hda8$|", "r/.*/" ]
+
+ # The results of the filtering are cached on disk to avoid
+ # rescanning dud devices (which can take a very long time).
+ # By default this cache is stored in the /etc/lvm/cache directory
+ # in a file called '.cache'.
+ # It is safe to delete the contents: the tools regenerate it.
+ # (The old setting 'cache' is still respected if neither of
+ # these new ones is present.)
+ cache_dir = "/run/lvm"
+ cache_file_prefix = ""
+
+ # You can turn off writing this cache file by setting this to 0.
+ write_cache_state = 1
+
+ # Advanced settings.
+
+ # List of pairs of additional acceptable block device types found
+ # in /proc/devices with maximum (non-zero) number of partitions.
+ # types = [ "fd", 16 ]
+
+ # If sysfs is mounted (2.6 kernels) restrict device scanning to
+ # the block devices it believes are valid.
+ # 1 enables; 0 disables.
+ sysfs_scan = 1
+
+ # By default, LVM2 will ignore devices used as component paths
+ # of device-mapper multipath devices.
+ # 1 enables; 0 disables.
+ multipath_component_detection = 1
+
+ # By default, LVM2 will ignore devices used as components of
+ # software RAID (md) devices by looking for md superblocks.
+ # 1 enables; 0 disables.
+ md_component_detection = 1
+
+ # By default, if a PV is placed directly upon an md device, LVM2
+ # will align its data blocks with the md device's stripe-width.
+ # 1 enables; 0 disables.
+ md_chunk_alignment = 1
+
+ # Default alignment of the start of a data area in MB. If set to 0,
+ # a value of 64KB will be used. Set to 1 for 1MiB, 2 for 2MiB, etc.
+ # default_data_alignment = 1
+
+ # By default, the start of a PV's data area will be a multiple of
+ # the 'minimum_io_size' or 'optimal_io_size' exposed in sysfs.
+ # - minimum_io_size - the smallest request the device can perform
+ # w/o incurring a read-modify-write penalty (e.g. MD's chunk size)
+ # - optimal_io_size - the device's preferred unit of receiving I/O
+ # (e.g. MD's stripe width)
+ # minimum_io_size is used if optimal_io_size is undefined (0).
+ # If md_chunk_alignment is enabled, that detects the optimal_io_size.
+ # This setting takes precedence over md_chunk_alignment.
+ # 1 enables; 0 disables.
+ data_alignment_detection = 1
+
+ # Alignment (in KB) of start of data area when creating a new PV.
+ # md_chunk_alignment and data_alignment_detection are disabled if set.
+ # Set to 0 for the default alignment (see: data_alignment_default)
+ # or page size, if larger.
+ data_alignment = 0
+
+ # By default, the start of the PV's aligned data area will be shifted by
+ # the 'alignment_offset' exposed in sysfs. This offset is often 0 but
+ # may be non-zero; e.g.: certain 4KB sector drives that compensate for
+ # windows partitioning will have an alignment_offset of 3584 bytes
+ # (sector 7 is the lowest aligned logical block, the 4KB sectors start
+ # at LBA -1, and consequently sector 63 is aligned on a 4KB boundary).
+ # But note that pvcreate --dataalignmentoffset will skip this detection.
+ # 1 enables; 0 disables.
+ data_alignment_offset_detection = 1
+
+ # If, while scanning the system for PVs, LVM2 encounters a device-mapper
+ # device that has its I/O suspended, it waits for it to become accessible.
+ # Set this to 1 to skip such devices. This should only be needed
+ # in recovery situations.
+ ignore_suspended_devices = 0
+
+ # During each LVM operation errors received from each device are counted.
+ # If the counter of a particular device exceeds the limit set here, no
+ # further I/O is sent to that device for the remainder of the respective
+ # operation. Setting the parameter to 0 disables the counters altogether.
+ disable_after_error_count = 0
+
+ # Allow use of pvcreate --uuid without requiring --restorefile.
+ require_restorefile_with_uuid = 1
+
+ # Minimum size (in KB) of block devices which can be used as PVs.
+ # In a clustered environment all nodes must use the same value.
+ # Any value smaller than 512KB is ignored.
+
+ # Ignore devices smaller than 2MB such as floppy drives.
+ pv_min_size = 2048
+
+ # The original built-in setting was 512 up to and including version 2.02.84.
+ # pv_min_size = 512
+
+ # Issue discards to a logical volumes's underlying physical volume(s) when
+ # the logical volume is no longer using the physical volumes' space (e.g.
+ # lvremove, lvreduce, etc). Discards inform the storage that a region is
+ # no longer in use. Storage that supports discards advertise the protocol
+ # specific way discards should be issued by the kernel (TRIM, UNMAP, or
+ # WRITE SAME with UNMAP bit set). Not all storage will support or benefit
+ # from discards but SSDs and thinly provisioned LUNs generally do. If set
+ # to 1, discards will only be issued if both the storage and kernel provide
+ # support.
+ # 1 enables; 0 disables.
+ issue_discards = 0
+}
+
+# This section allows you to configure the way in which LVM selects
+# free space for its Logical Volumes.
+#allocation {
+# When searching for free space to extend an LV, the "cling"
+# allocation policy will choose space on the same PVs as the last
+# segment of the existing LV. If there is insufficient space and a
+# list of tags is defined here, it will check whether any of them are
+# attached to the PVs concerned and then seek to match those PV tags
+# between existing extents and new extents.
+# Use the special tag "@*" as a wildcard to match any PV tag.
+#
+# Example: LVs are mirrored between two sites within a single VG.
+# PVs are tagged with either @site1 or @site2 to indicate where
+# they are situated.
+#
+# cling_tag_list = [ "@site1", "@site2" ]
+# cling_tag_list = [ "@*" ]
+#
+# Changes made in version 2.02.85 extended the reach of the 'cling'
+# policies to detect more situations where data can be grouped
+# onto the same disks. Set this to 0 to revert to the previous
+# algorithm.
+#
+# maximise_cling = 1
+#
+# Set to 1 to guarantee that mirror logs will always be placed on
+# different PVs from the mirror images. This was the default
+# until version 2.02.85.
+#
+# mirror_logs_require_separate_pvs = 0
+#
+# Set to 1 to guarantee that thin pool metadata will always
+# be placed on different PVs from the pool data.
+#
+# thin_pool_metadata_require_separate_pvs = 0
+#}
+
+# This section that allows you to configure the nature of the
+# information that LVM2 reports.
+log {
+
+ # Controls the messages sent to stdout or stderr.
+ # There are three levels of verbosity, 3 being the most verbose.
+ verbose = 0
+
+ # Should we send log messages through syslog?
+ # 1 is yes; 0 is no.
+ syslog = 1
+
+ # Should we log error and debug messages to a file?
+ # By default there is no log file.
+ #file = "/var/log/lvm2.log"
+
+ # Should we overwrite the log file each time the program is run?
+ # By default we append.
+ overwrite = 0
+
+ # What level of log messages should we send to the log file and/or syslog?
+ # There are 6 syslog-like log levels currently in use - 2 to 7 inclusive.
+ # 7 is the most verbose (LOG_DEBUG).
+ level = 0
+
+ # Format of output messages
+ # Whether or not (1 or 0) to indent messages according to their severity
+ indent = 1
+
+ # Whether or not (1 or 0) to display the command name on each line output
+ command_names = 0
+
+ # A prefix to use before the message text (but after the command name,
+ # if selected). Default is two spaces, so you can see/grep the severity
+ # of each message.
+ prefix = " "
+
+ # To make the messages look similar to the original LVM tools use:
+ # indent = 0
+ # command_names = 1
+ # prefix = " -- "
+
+ # Set this if you want log messages during activation.
+ # Don't use this in low memory situations (can deadlock).
+ # activation = 0
+}
+
+# Configuration of metadata backups and archiving. In LVM2 when we
+# talk about a 'backup' we mean making a copy of the metadata for the
+# *current* system. The 'archive' contains old metadata configurations.
+# Backups are stored in a human readeable text format.
+backup {
+
+ # Should we maintain a backup of the current metadata configuration ?
+ # Use 1 for Yes; 0 for No.
+ # Think very hard before turning this off!
+ backup = 1
+
+ # Where shall we keep it ?
+ # Remember to back up this directory regularly!
+ backup_dir = "/etc/lvm/backup"
+
+ # Should we maintain an archive of old metadata configurations.
+ # Use 1 for Yes; 0 for No.
+ # On by default. Think very hard before turning this off.
+ archive = 1
+
+ # Where should archived files go ?
+ # Remember to back up this directory regularly!
+ archive_dir = "/etc/lvm/archive"
+
+ # What is the minimum number of archive files you wish to keep ?
+ retain_min = 10
+
+ # What is the minimum time you wish to keep an archive file for ?
+ retain_days = 30
+}
+
+# Settings for the running LVM2 in shell (readline) mode.
+shell {
+
+ # Number of lines of history to store in ~/.lvm_history
+ history_size = 100
+}
+
+
+# Miscellaneous global LVM2 settings
+global {
+
+ # The file creation mask for any files and directories created.
+ # Interpreted as octal if the first digit is zero.
+ umask = 077
+
+ # Allow other users to read the files
+ #umask = 022
+
+ # Enabling test mode means that no changes to the on disk metadata
+ # will be made. Equivalent to having the -t option on every
+ # command. Defaults to off.
+ test = 0
+
+ # Default value for --units argument
+ units = "h"
+
+ # Since version 2.02.54, the tools distinguish between powers of
+ # 1024 bytes (e.g. KiB, MiB, GiB) and powers of 1000 bytes (e.g.
+ # KB, MB, GB).
+ # If you have scripts that depend on the old behaviour, set this to 0
+ # temporarily until you update them.
+ si_unit_consistency = 1
+
+ # Whether or not to communicate with the kernel device-mapper.
+ # Set to 0 if you want to use the tools to manipulate LVM metadata
+ # without activating any logical volumes.
+ # If the device-mapper kernel driver is not present in your kernel
+ # setting this to 0 should suppress the error messages.
+ activation = 1
+
+ # If we can't communicate with device-mapper, should we try running
+ # the LVM1 tools?
+ # This option only applies to 2.4 kernels and is provided to help you
+ # switch between device-mapper kernels and LVM1 kernels.
+ # The LVM1 tools need to be installed with .lvm1 suffices
+ # e.g. vgscan.lvm1 and they will stop working after you start using
+ # the new lvm2 on-disk metadata format.
+ # The default value is set when the tools are built.
+ # fallback_to_lvm1 = 0
+
+ # The default metadata format that commands should use - "lvm1" or "lvm2".
+ # The command line override is -M1 or -M2.
+ # Defaults to "lvm2".
+ # format = "lvm2"
+
+ # Location of proc filesystem
+ proc = "/proc"
+
+ # Type of locking to use. Defaults to local file-based locking (1).
+ # Turn locking off by setting to 0 (dangerous: risks metadata corruption
+ # if LVM2 commands get run concurrently).
+ # Type 2 uses the external shared library locking_library.
+ # Type 3 uses built-in clustered locking.
+ # Type 4 uses read-only locking which forbids any operations that might
+ # change metadata.
+ locking_type = 1
+
+ # Set to 0 to fail when a lock request cannot be satisfied immediately.
+ wait_for_locks = 1
+
+ # If using external locking (type 2) and initialisation fails,
+ # with this set to 1 an attempt will be made to use the built-in
+ # clustered locking.
+ # If you are using a customised locking_library you should set this to 0.
+ fallback_to_clustered_locking = 1
+
+ # If an attempt to initialise type 2 or type 3 locking failed, perhaps
+ # because cluster components such as clvmd are not running, with this set
+ # to 1 an attempt will be made to use local file-based locking (type 1).
+ # If this succeeds, only commands against local volume groups will proceed.
+ # Volume Groups marked as clustered will be ignored.
+ fallback_to_local_locking = 1
+
+ # Local non-LV directory that holds file-based locks while commands are
+ # in progress. A directory like /tmp that may get wiped on reboot is OK.
+ locking_dir = "/run/lock/lvm"
+
+ # Whenever there are competing read-only and read-write access requests for
+ # a volume group's metadata, instead of always granting the read-only
+ # requests immediately, delay them to allow the read-write requests to be
+ # serviced. Without this setting, write access may be stalled by a high
+ # volume of read-only requests.
+ # NB. This option only affects locking_type = 1 viz. local file-based
+ # locking.
+ prioritise_write_locks = 1
+
+ # Other entries can go here to allow you to load shared libraries
+ # e.g. if support for LVM1 metadata was compiled as a shared library use
+ # format_libraries = "liblvm2format1.so"
+ # Full pathnames can be given.
+
+ # Search this directory first for shared libraries.
+ # library_dir = "/lib/lvm2"
+
+ # The external locking library to load if locking_type is set to 2.
+ # locking_library = "liblvm2clusterlock.so"
+
+ # Treat any internal errors as fatal errors, aborting the process that
+ # encountered the internal error. Please only enable for debugging.
+ abort_on_internal_errors = 0
+
+ # Check whether CRC is matching when parsed VG is used multiple times.
+ # This is useful to catch unexpected internal cached volume group
+ # structure modification. Please only enable for debugging.
+ detect_internal_vg_cache_corruption = 0
+
+ # If set to 1, no operations that change on-disk metadata will be permitted.
+ # Additionally, read-only commands that encounter metadata in need of repair
+ # will still be allowed to proceed exactly as if the repair had been
+ # performed (except for the unchanged vg_seqno).
+ # Inappropriate use could mess up your system, so seek advice first!
+ metadata_read_only = 0
+
+ # 'mirror_segtype_default' defines which segtype will be used when the
+ # shorthand '-m' option is used for mirroring. The possible options are:
+ #
+ # "mirror" - The original RAID1 implementation provided by LVM2/DM. It is
+ # characterized by a flexible log solution (core, disk, mirrored)
+ # and by the necessity to block I/O while reconfiguring in the
+ # event of a failure. Snapshots of this type of RAID1 can be
+ # problematic.
+ #
+ # "raid1" - This implementation leverages MD's RAID1 personality through
+ # device-mapper. It is characterized by a lack of log options.
+ # (A log is always allocated for every device and they are placed
+ # on the same device as the image - no separate devices are
+ # required.) This mirror implementation does not require I/O
+ # to be blocked in the kernel in the event of a failure.
+ #
+ # Specify the '--type <mirror|raid1>' option to override this default
+ # setting.
+ mirror_segtype_default = "mirror"
+
+ # The default format for displaying LV names in lvdisplay was changed
+ # in version 2.02.89 to show the LV name and path separately.
+ # Previously this was always shown as /dev/vgname/lvname even when that
+ # was never a valid path in the /dev filesystem.
+ # Set to 1 to reinstate the previous format.
+ #
+ # lvdisplay_shows_full_device_path = 0
+
+ # Whether to use (trust) a running instance of lvmetad. If this is set to
+ # 0, all commands fall back to the usual scanning mechanisms. When set to 1
+ # *and* when lvmetad is running (it is not auto-started), the volume group
+ # metadata and PV state flags are obtained from the lvmetad instance and no
+ # scanning is done by the individual commands. In a setup with lvmetad,
+ # lvmetad udev rules *must* be set up for LVM to work correctly. Without
+ # proper udev rules, all changes in block device configuration will be
+ # *ignored* until a manual 'vgscan' is performed.
+ use_lvmetad = 0
+}
+
+activation {
+ # Set to 1 to perform internal checks on the operations issued to
+ # libdevmapper. Useful for debugging problems with activation.
+ # Some of the checks may be expensive, so it's best to use this
+ # only when there seems to be a problem.
+ checks = 0
+
+ # Set to 0 to disable udev synchronisation (if compiled into the binaries).
+ # Processes will not wait for notification from udev.
+ # They will continue irrespective of any possible udev processing
+ # in the background. You should only use this if udev is not running
+ # or has rules that ignore the devices LVM2 creates.
+ # The command line argument --nodevsync takes precedence over this setting.
+ # If set to 1 when udev is not running, and there are LVM2 processes
+ # waiting for udev, run 'dmsetup udevcomplete_all' manually to wake them up.
+ udev_sync = 1
+
+ # Set to 0 to disable the udev rules installed by LVM2 (if built with
+ # --enable-udev_rules). LVM2 will then manage the /dev nodes and symlinks
+ # for active logical volumes directly itself.
+ # N.B. Manual intervention may be required if this setting is changed
+ # while any logical volumes are active.
+ udev_rules = 1
+
+ # Set to 1 for LVM2 to verify operations performed by udev. This turns on
+ # additional checks (and if necessary, repairs) on entries in the device
+ # directory after udev has completed processing its events.
+ # Useful for diagnosing problems with LVM2/udev interactions.
+ verify_udev_operations = 0
+
+ # If set to 1 and if deactivation of an LV fails, perhaps because
+ # a process run from a quick udev rule temporarily opened the device,
+ # retry the operation for a few seconds before failing.
+ retry_deactivation = 1
+
+ # How to fill in missing stripes if activating an incomplete volume.
+ # Using "error" will make inaccessible parts of the device return
+ # I/O errors on access. You can instead use a device path, in which
+ # case, that device will be used to in place of missing stripes.
+ # But note that using anything other than "error" with mirrored
+ # or snapshotted volumes is likely to result in data corruption.
+ missing_stripe_filler = "error"
+
+ # The linear target is an optimised version of the striped target
+ # that only handles a single stripe. Set this to 0 to disable this
+ # optimisation and always use the striped target.
+ use_linear_target = 1
+
+ # How much stack (in KB) to reserve for use while devices suspended
+ # Prior to version 2.02.89 this used to be set to 256KB
+ reserved_stack = 64
+
+ # How much memory (in KB) to reserve for use while devices suspended
+ reserved_memory = 8192
+
+ # Nice value used while devices suspended
+ process_priority = -18
+
+ # If volume_list is defined, each LV is only activated if there is a
+ # match against the list.
+ # "vgname" and "vgname/lvname" are matched exactly.
+ # "@tag" matches any tag set in the LV or VG.
+ # "@*" matches if any tag defined on the host is also set in the LV or VG
+ #
+ # volume_list = [ "vg1", "vg2/lvol1", "@tag1", "@*" ]
+
+ # If read_only_volume_list is defined, each LV that is to be activated
+ # is checked against the list, and if it matches, it as activated
+ # in read-only mode. (This overrides '--permission rw' stored in the
+ # metadata.)
+ # "vgname" and "vgname/lvname" are matched exactly.
+ # "@tag" matches any tag set in the LV or VG.
+ # "@*" matches if any tag defined on the host is also set in the LV or VG
+ #
+ # read_only_volume_list = [ "vg1", "vg2/lvol1", "@tag1", "@*" ]
+
+ # Size (in KB) of each copy operation when mirroring
+ mirror_region_size = 512
+
+ # Setting to use when there is no readahead value stored in the metadata.
+ #
+ # "none" - Disable readahead.
+ # "auto" - Use default value chosen by kernel.
+ readahead = "auto"
+
+ # 'raid_fault_policy' defines how a device failure in a RAID logical
+ # volume is handled. This includes logical volumes that have the following
+ # segment types: raid1, raid4, raid5*, and raid6*.
+ #
+ # In the event of a failure, the following policies will determine what
+ # actions are performed during the automated response to failures (when
+ # dmeventd is monitoring the RAID logical volume) and when 'lvconvert' is
+ # called manually with the options '--repair' and '--use-policies'.
+ #
+ # "warn" - Use the system log to warn the user that a device in the RAID
+ # logical volume has failed. It is left to the user to run
+ # 'lvconvert --repair' manually to remove or replace the failed
+ # device. As long as the number of failed devices does not
+ # exceed the redundancy of the logical volume (1 device for
+ # raid4/5, 2 for raid6, etc) the logical volume will remain
+ # usable.
+ #
+ # "allocate" - Attempt to use any extra physical volumes in the volume
+ # group as spares and replace faulty devices.
+ #
+ raid_fault_policy = "warn"
+
+ # 'mirror_image_fault_policy' and 'mirror_log_fault_policy' define
+ # how a device failure affecting a mirror (of "mirror" segment type) is
+ # handled. A mirror is composed of mirror images (copies) and a log.
+ # A disk log ensures that a mirror does not need to be re-synced
+ # (all copies made the same) every time a machine reboots or crashes.
+ #
+ # In the event of a failure, the specified policy will be used to determine
+ # what happens. This applies to automatic repairs (when the mirror is being
+ # monitored by dmeventd) and to manual lvconvert --repair when
+ # --use-policies is given.
+ #
+ # "remove" - Simply remove the faulty device and run without it. If
+ # the log device fails, the mirror would convert to using
+ # an in-memory log. This means the mirror will not
+ # remember its sync status across crashes/reboots and
+ # the entire mirror will be re-synced. If a
+ # mirror image fails, the mirror will convert to a
+ # non-mirrored device if there is only one remaining good
+ # copy.
+ #
+ # "allocate" - Remove the faulty device and try to allocate space on
+ # a new device to be a replacement for the failed device.
+ # Using this policy for the log is fast and maintains the
+ # ability to remember sync state through crashes/reboots.
+ # Using this policy for a mirror device is slow, as it
+ # requires the mirror to resynchronize the devices, but it
+ # will preserve the mirror characteristic of the device.
+ # This policy acts like "remove" if no suitable device and
+ # space can be allocated for the replacement.
+ #
+ # "allocate_anywhere" - Not yet implemented. Useful to place the log device
+ # temporarily on same physical volume as one of the mirror
+ # images. This policy is not recommended for mirror devices
+ # since it would break the redundant nature of the mirror. This
+ # policy acts like "remove" if no suitable device and space can
+ # be allocated for the replacement.
+
+ mirror_log_fault_policy = "allocate"
+ mirror_image_fault_policy = "remove"
+
+ # 'snapshot_autoextend_threshold' and 'snapshot_autoextend_percent' define
+ # how to handle automatic snapshot extension. The former defines when the
+ # snapshot should be extended: when its space usage exceeds this many
+ # percent. The latter defines how much extra space should be allocated for
+ # the snapshot, in percent of its current size.
+ #
+ # For example, if you set snapshot_autoextend_threshold to 70 and
+ # snapshot_autoextend_percent to 20, whenever a snapshot exceeds 70% usage,
+ # it will be extended by another 20%. For a 1G snapshot, using up 700M will
+ # trigger a resize to 1.2G. When the usage exceeds 840M, the snapshot will
+ # be extended to 1.44G, and so on.
+ #
+ # Setting snapshot_autoextend_threshold to 100 disables automatic
+ # extensions. The minimum value is 50 (A setting below 50 will be treated
+ # as 50).
+
+ snapshot_autoextend_threshold = 100
+ snapshot_autoextend_percent = 20
+
+ # 'thin_pool_autoextend_threshold' and 'thin_pool_autoextend_percent' define
+ # how to handle automatic pool extension. The former defines when the
+ # pool should be extended: when its space usage exceeds this many
+ # percent. The latter defines how much extra space should be allocated for
+ # the pool, in percent of its current size.
+ #
+ # For example, if you set thin_pool_autoextend_threshold to 70 and
+ # thin_pool_autoextend_percent to 20, whenever a pool exceeds 70% usage,
+ # it will be extended by another 20%. For a 1G pool, using up 700M will
+ # trigger a resize to 1.2G. When the usage exceeds 840M, the pool will
+ # be extended to 1.44G, and so on.
+ #
+ # Setting thin_pool_autoextend_threshold to 100 disables automatic
+ # extensions. The minimum value is 50 (A setting below 50 will be treated
+ # as 50).
+
+ thin_pool_autoextend_threshold = 100
+ thin_pool_autoextend_percent = 20
+
+ # Full path of the utility called to check that a thin metadata device
+ # is in a state that allows it to be used.
+ # Each time a thin pool needs to be activated, this utility is executed.
+ # The activation will only proceed if the utility has an exit status of 0.
+ # Set to "" to skip this check. (Not recommended.)
+ # The thin tools are available as part of the device-mapper-persistent-data
+ # package from https://github.com/jthornber/thin-provisioning-tools.
+ #
+ thin_check_executable = "/sbin/thin_check -q"
+
+ # While activating devices, I/O to devices being (re)configured is
+ # suspended, and as a precaution against deadlocks, LVM2 needs to pin
+ # any memory it is using so it is not paged out. Groups of pages that
+ # are known not to be accessed during activation need not be pinned
+ # into memory. Each string listed in this setting is compared against
+ # each line in /proc/self/maps, and the pages corresponding to any
+ # lines that match are not pinned. On some systems locale-archive was
+ # found to make up over 80% of the memory used by the process.
+ # mlock_filter = [ "locale/locale-archive", "gconv/gconv-modules.cache" ]
+
+ # Set to 1 to revert to the default behaviour prior to version 2.02.62
+ # which used mlockall() to pin the whole process's memory while activating
+ # devices.
+ use_mlockall = 0
+
+ # Monitoring is enabled by default when activating logical volumes.
+ # Set to 0 to disable monitoring or use the --ignoremonitoring option.
+ monitoring = 0
+
+ # When pvmove or lvconvert must wait for the kernel to finish
+ # synchronising or merging data, they check and report progress
+ # at intervals of this number of seconds. The default is 15 seconds.
+ # If this is set to 0 and there is only one thing to wait for, there
+ # are no progress reports, but the process is awoken immediately the
+ # operation is complete.
+ polling_interval = 15
+}
+
+
+####################
+# Advanced section #
+####################
+
+# Metadata settings
+#
+# metadata {
+ # Default number of copies of metadata to hold on each PV. 0, 1 or 2.
+ # You might want to override it from the command line with 0
+ # when running pvcreate on new PVs which are to be added to large VGs.
+
+ # pvmetadatacopies = 1
+
+ # Default number of copies of metadata to maintain for each VG.
+ # If set to a non-zero value, LVM automatically chooses which of
+ # the available metadata areas to use to achieve the requested
+ # number of copies of the VG metadata. If you set a value larger
+ # than the the total number of metadata areas available then
+ # metadata is stored in them all.
+ # The default value of 0 ("unmanaged") disables this automatic
+ # management and allows you to control which metadata areas
+ # are used at the individual PV level using 'pvchange
+ # --metadataignore y/n'.
+
+ # vgmetadatacopies = 0
+
+ # Approximate default size of on-disk metadata areas in sectors.
+ # You should increase this if you have large volume groups or
+ # you want to retain a large on-disk history of your metadata changes.
+
+ # pvmetadatasize = 255
+
+ # List of directories holding live copies of text format metadata.
+ # These directories must not be on logical volumes!
+ # It's possible to use LVM2 with a couple of directories here,
+ # preferably on different (non-LV) filesystems, and with no other
+ # on-disk metadata (pvmetadatacopies = 0). Or this can be in
+ # addition to on-disk metadata areas.
+ # The feature was originally added to simplify testing and is not
+ # supported under low memory situations - the machine could lock up.
+ #
+ # Never edit any files in these directories by hand unless you
+ # you are absolutely sure you know what you are doing! Use
+ # the supplied toolset to make changes (e.g. vgcfgrestore).
+
+ # dirs = [ "/etc/lvm/metadata", "/mnt/disk2/lvm/metadata2" ]
+#}
+
+# Event daemon
+#
+dmeventd {
+ # mirror_library is the library used when monitoring a mirror device.
+ #
+ # "libdevmapper-event-lvm2mirror.so" attempts to recover from
+ # failures. It removes failed devices from a volume group and
+ # reconfigures a mirror as necessary. If no mirror library is
+ # provided, mirrors are not monitored through dmeventd.
+
+ mirror_library = "libdevmapper-event-lvm2mirror.so"
+
+ # snapshot_library is the library used when monitoring a snapshot device.
+ #
+ # "libdevmapper-event-lvm2snapshot.so" monitors the filling of
+ # snapshots and emits a warning through syslog when the use of
+ # the snapshot exceeds 80%. The warning is repeated when 85%, 90% and
+ # 95% of the snapshot is filled.
+
+ snapshot_library = "libdevmapper-event-lvm2snapshot.so"
+
+ # thin_library is the library used when monitoring a thin device.
+ #
+ # "libdevmapper-event-lvm2thin.so" monitors the filling of
+ # pool and emits a warning through syslog when the use of
+ # the pool exceeds 80%. The warning is repeated when 85%, 90% and
+ # 95% of the pool is filled.
+
+ thin_library = "libdevmapper-event-lvm2thin.so"
+
+ # Full path of the dmeventd binary.
+ #
+ # executable = "/sbin/dmeventd"
+}